Продуценты, биология, селекция, генетическая инженерия

УДК 663.15

Влияние углеводного субстрата из крахмалсодержащего сырья на состав глюканов биомассы микромицета Aspergillus niger ВКПМ F-171

© **2020** Н.Ю. ШАРОВА^{1,2*}, Б.С. МАНЖИЕВА¹, А.А. ПРИНЦЕВА¹, Т.В. ВЫБОРНОВА¹, А.С. МИРОШНИК¹, И.В. КРУЧИНА-БОГДАНОВ³, И.А. ОРЕХОВА²

Поступила в редакцию 23.01.2020 г. После доработки 04.05.2020 г. Принята к публикации 19.09.2020 г.

Описаны условия биокаталитического расщепления кукурузного крахмала и измельченного зерна ржи для культивирования штамма Asperillus niger ВКПМ F-171. В субстратах количество водорастворимых углеводов по сравнению с сырьем увеличилось в 5-6 раз, содержание β-формы глюканов в гидролизате измельченного зерна ржи — в 2-3 раза. При культивировании A. niger ВКПМ F-171 на гидролизате кукурузного крахмала содержание глюканов в биомассе в пересчете на сухие вещества в конце биотехнологического процесса составило 28±2%, при ферментации гидролизата измельченного зерна ржи — 21±1%, из них 96-97% приходится на β-глюканы. После гидролиза β-глюканазой *Trichoderma longibrachiatum* и ксиланазой *Trichoderma reesei* в микробной биомассе доля растворимых углеводов увеличилась в 1,1-1,2 раза. Методом газожидкостной хроматографии установлено, что структурные единицы углеводов микробной биомассы представлены глюкозой и ее 2- и 6-дезоксипроизводными, фруктозой, фукозой, галактозой, маннозой, ксилозой и в наибольшей мере резервным сахаридом седогептулозой. Выявлено, что β-глюканы являются продуктами гидролиза хитин-глюканового комплекса и гликопептидов. Молекулярная масса полученных микробных глюкансодержащих биополимеров находится в пределах 0,5-50 кДа. Показано, что по содержанию β-глюканов микробная биомасса составляет альтернативу растительным источникам.

Ключевые слова: биосинтез, Asperillus niger, биокатализ, крахмалсодержащее сырье, глюканы

doi: 10.21519/0234-2758-2020-36-5-41-53

Глюканы аспергиллов представляют интерес в качестве объекта для исследований процессов синтеза внеклеточных полисахаридов микромицетов, имеющих промышленное значение. Клеточная стенка мицелия и конидий Aspergillus niger представляет собой плотный наружный слой и состоит из ряда структурных углеводов, включая β-глюканы, хитин, α-глюканы, галактоманнан,

галактозаминогалактан и сложные пигменты меланины, которые используются, например, в технологиях пищевой продукции функционального назначения, в процессах получения биологически активных субстанций [1–5]. Внеклеточные полисахариды в основном входят в состав включений, расположенных на клеточной стенке в виде капсул или слизистых слоев [6, 7]. Структура

¹ Всероссийский научно-исследовательский институт пищевых добавок — филиал Федерального научного центра пищевых систем им. В.М. Горбатова Российской академии наук, Санкт-Петербург, 191014

² Санкт-Петербургский государственный химико-фармацевтический университет, Санкт-Петербург, 197376

³ ООО Малое инновационное предприятие «Аналитика. Материалы. Технологии» Санкт-Петербург, 194021

^{*}e-mail: natalya_sharoval@mail.ru

C*писок сокращений*: ГЖХ — газожидкостная хроматография; ДЕ –декстрозный эквивалент; СВ — сухие вещества; M_r — молекулярная масса; ХГК — хитин-глюкановый комплекс.

таких включений отличается для микроорганизмов различных таксономических групп. У представителей бактерий, например, капсулы рыхлые, неоднородной структуры, легко отделяющиеся от клеточной стенки. Помимо гликанов капсульные включения могут содержать вещества белковой и липидной природы, в том числе их комплексы с полисахаридами [8, 9].

Микромицет Aspergillus niger синтезирует α-глюкан, структура которого включает чередующиеся (1,4)- и (1,3)-связи; при ферментации полисахарид секретируется в культуральную среду [10]. Помимо α-форм глюканов аспергиллы синтезируют β-формы, которые являются составной частью такого компонента клеточной стенки как хитин-глюкановый комплекс (ХГК) [11]. Отдельно углеводные составляющие — хитин и глюкан — известны как полимеры соответственно с высокими сорбционными и влагосвязывающими свойствами [12, 13].

В большей мере практический интерес вызывает (1,3)(1,6)-β-D-форма глюканов, которые синтезируются микроорганизмами и за счет структуры обладают свойствами гидроколлоидов. Эти полисахариды рассматривают в качестве перспективных субстанций для создания продуктов функционального назначения [14-19]. По сравнению с (1,4)-β-D-глюканами из других природных источников (зерно злаковых, ХГК панциря крабовых или высшие грибы), (1,3)(1,6)-β-D-форма глюканов клеточной стенки микромицетов более активна и реакционноспособна в циклах биохимических превращений. Бета-глюкансодержащие ингредиенты и их производные используются в качестве пищевых добавок при изготовлении широкого ассортимента продуктов: для обогащения волокнами, в качестве загустителей, эмульгирующих и жироимитирующих микроингредиентов, стабилизаторов кремообразных эмульсий, текстурообразователей, улучшителей вкусовых показателей, для увеличения срока хранения продуктов благодаря влагосвязывающим свойствам [17]. Бета-глюканы являются основным компонентом в составе биологически активных добавок к пище в специализированном питании (для спортсменов), в продуктах функционального назначения (для коррекции веса, уменьшения гликемического индекса углеводсодержащих пищевых продуктов, стимулирования пищеварительной системы (пребиотики), снижения уровня холестерина и др.) [16, 17].

В настоящее время актуальна проблема целенаправленного использования побочного сырья биотехнологических производств, в частности биомассы продуцентов микробного

происхождения. Клеточная стенка микромицета A. niger, являющегося промышленным продуцентом карбоновых кислот (лимонная, глюконовая), гидролитических ферментов (амилазы, протеазы), содержит 20-22% ХГК, из которого 47-50% приходится на β-глюкан. Количество синтезируемых внеклеточных поли- и олигосахаридов в значительной мере зависит от углеводного состава ферментационной среды и фазы развития микроорганизма [20-24]. Детально изучен количественный и качественный состав глюкансодержащих соединений биомассы микромицета A. niger, при получении лимонной кислоты по классической технологии, согласно которой углеводным источником для биосинтеза целевого метаболита является свекловичная меласса [12, 25]. Известны данные о содержании глюканов в биомассе A. niger в результате ферментации сахарозоминеральной среды в лимонную кислоту [25]. Для продуцирования гидролитических ферментов в качестве источников предпочтительных субстратов известны зерновые культуры и содержащиеся в них крахмалы. Последние широко используется за рубежом в качестве сырья для промышленного производства, как карбоновых кислот, так и ферментов, и рассматриваются в качестве перспективного «экологически безопасного» сырья для отечественных технологий, в том числе «совмещенных», позволяющих получать в одном технологическом процессе несколько целевых метаболитов, например, пищевые карбоновые кислоты и ферменты [12, 25].

Целью работы было исследование влияния состава углеводного субстрата из крахмалсодержащего сырья на биосинтез глюканов микромицетом *A. niger* BKIIM F-171 — продуцентом лимонной кислоты и амилолитических ферментов.

УСЛОВИЯ ЭКСПЕРИМЕНТА

Материалы

Объектом исследования служил бежевый штамм Aspergillus niger ВКПМ F-171 (Ермакова В.П., Щербакова Е.Я., Василинец И.М., Финько В.М., Шушкевич Т.Н.) из коллекции микроорганизмов ВНИИПД [26].

В качестве источника углерода использовали крахмалсодержащее сырье, на котором разработаны отечественные технологии пищевых трикарбоновых кислот и амилолитических ферментов [24–28]: гидролизаты крахмалсодержащего сырья, полученные по ГОСТ 32034–2013 из кукурузного крахмала (ООО «Ярснаб», Россия) и измельченного зерна ржи Омского региона (ООО «Зерновая компания», Россия) с размером частиц 950±50 мкм (определен на анализаторе размера

частиц HORIBA LB-550; (HORIBA Jobin Yvon S.A.S, Франция); сахар кристаллический (сахарный комбинат Льговский, Россия), меласса свекловичная (сахарный комбинат Льговский). В качестве источника азота использовали аммоний азотнокислый (НПО «Реагент», Россия), источника фосфора — калий фосфорнокислый однозамещенный (ООО «Компонент-Реактив», Россия), источника магния — магний сернокислый семиводный («Буйский химический завод», Россия).

Ферментативный гидролиз

Гидролиз проводили с использованием:

- для кукурузного крахмала α-амила-(диастаза, 1.4-а-D-глюкангидролаза, КФ 3.2.1.1.) Bacillus subtilis в составе препарата Амилосубтилин ГЗХ (ГОСТ 23635-90; ООО ПО «Сиббиофарм», Россия; стандартизован по амилолитической активности, характеризующей способность амилолитических ферментов (АС) гидролизовать крахмал до декстринов с различной Mr и составляющей 1 000 ± 100 ед AC/Γ препарата; препарат обладает протеолитической способностью (ПС) катализировать расщепление белка до пептидов и аминокислот, 5 ед ПС/г препарата; препарат содержит экзо-β-глюканазу, эндо-β-1,3(4)-глюканазу, ксиланазу), взятого в дозировке 1 ед/г помола при рН 6.5 ± 0.1 , температуре 60±1 °С и времени инкубации 60 мин;
- для помола зерна ржи целлюла-(1,4-β-D-глюкан-глюканогидролаза, КФ 3.2.1.4) Trichoderma viride в coставе препарата Целловиридин (ООО ПО «Сиббиофарм», Россия; стандартизован по целлюлазной активности 50 ед ЦС/г и содержит экзо-, эндоглю-(1,4-β-D-глюкан-глюкогидролаза, КФ 3.2.1.74), целлобиазу (экзо-1,4-β-D-глюканцеллобиогидролаза, КФ 3.2.1.91), ксиланазу (эндо-1,4-ксиланаза, КФ 3.2.1.8)), взятого в дозировке 2 ед/г помола при рН $5,0\pm0,5$, температуре 50 ± 1 °С и времени инкубации 60 мин. Полученный гидролизат подщелачивали раствором 0,1 M NaOH до pH 6,5±0,1 и проводили гидролиз препаратом Амилосубтилина ГЗХ в дозировке 1 ед AC/г помола при pH $6,5\pm0,1$, температуре 60±1 °C и времени инкубации 60 мин.

Условия культивирования A. niger ВКПМ F-171

Инокулят (посевной материал) выращивали на среде следующего состава, г/л: сахар кристаллический — 50.0; меласса свекловичная — 17.0;

аммоний азотнокислый — 2,5; магний сернокислый семиводный — 0,25; калий фосфорнокислый однозамещенный — 0,16; pH 5,0–5,5 [26].

Инокулят вносили в ферментационную среду, содержащую следующие компоненты (г/л):

- гидролизат кукурузного крахмала (ДЕ 22±1%) в пересчете на глюкозу 150; аммоний азотнокислый 2,5; магний сернокислый семиводный 0,25; калий фосфорнокислый однозамещенный 0,16; рН среды 6,5 [27];
- гидролизат измельчённого зерна ржи (ДЕ 58±3%) в пересчете на глюкозу 110, аммоний азотнокислый 0,1; магний сернокислый семиводный 0,25; калий фосфорнокислый однозамещенный 0,08, рН 6,5 [28].

Условия культивирования в шейкере-инкубаторе Multitron (INFORS, Швейцария): вместимость качалочных колб 750 мл; объем среды 60 мл; количество инокулята 10% от объема среды (6 мл); температура на стадии получения инокулята 36±1 °C, на стадии ферментации 32±1 °C; скорость перемешивания 200 об/мин (при ферментации гидролизата крахмала) и 230 об/мин (при ферментации гидролизата помола зерна ржи); длительность стадии получения инокулята 24 ч, стадии ферментации 120 ч [27, 28].

Условия культивирования в ферментере Biostat® Cplus вместимостью 30 л (Sartorius, Германия): объем ферментационной среды 14 л, количество инокулята 10% от объема ферментационной среды (объем 1,4 л); температура на стадии получения инокулята 36 ± 1 °C, на стадии ферментации 32 ± 1 °C; скорость перемешивания 100-300 об/мин (при ферментации гидролизата крахмала), длительность стадии получения инокулята 24 ч, стадии ферментации 120 ч [27, 28].

Получение водорастворимых глюканов

Для получения водорастворимых глюканов биомассу после биотехнологического процесса инактивировали при 90±1 °C в течение 3–6 мин, отделяли твердую фракцию на нутч-фильте, отмывали от остатков ферментационной среды дистиллированной водой до значения промывных вод рН 6,0±0,1; затем готовили суспензию в соотношении биомасса—вода 1:3 с последующим выдерживанием полученной массы при 20—25 °C в течение 12 ч. Полученную суспензию обрабатывали ультразвуком (УЗ) на генераторе УЗГ 5 (ООО «Ультра-резонанс», Россия), как описано ранее [27]: интенсивность 50–100 Вт/см², частота колебаний 18–24 кГц, температура 20–25 °C, в течение 2 мин. Затем проводили

ферментативный гидролиз УЗ-обработанной суспензии с использованием:

- β-глюканазы (эндо-1,3(4)-β-глюканаза, КФ 3.2.1.74) *Trichoderma longibrachiatum* (Sigma, США) при рН 4,7±0,1, 48±2 °С в течение 60 мин в дозировке 200 ед/г для биомассы, полученной при ферментации гидролизата крахмала;
- β-глюканазы *Trichoderma longibrachiatum* при рН 4,7±0,1, 48±2°C в течение 60 мин в дозировке 200 ед/г и ксиланазы (эндо-1,4-β-ксиланаза, КФ 3.2.1.8) *Trichoderma reesei* в составе препарата Rohament GE (AB Enzymes GmbH, Германия) в дозировке 10 ед/г при рН 5,1±0,1, 40±1°C в течение 60 мин для биомассы, полученной при ферментации гидролизата помола зерна ржи.

После ферментативного гидролиза ферменты инактивировали при температуре $90\pm2\,^{\circ}$ С, полученный материал центрифугировали при 5 000 g в течение 20 мин (центрифуга MPW-351P; MPWMed Instruments, Польша). Супернатант собирали и анализировали в нем содержание водорастворимых глюканов.

Количественный анализ глюканов

Для определения содержания глюканов белковые вещества удаляли обработкой 5%-ным раствором трихлоруксусной кислоты (ТХУ) в соотношении (суспензия/супернатант: ТХУ) 1:5 с последующим центрифугированием при 5 000 g в течение 20 мин (центрифуга MPW-351P, MPW Med. Instruments, Польша).

Содержание общих глюканов, α - и β -форм глюканов определяли в течение всего биотехнологического процесса (от 24 ч до 120 ч ферментации) по ГОСТ Р 57513-2017, согласно которому содержание β -глюканов рассчитывали по разнице между содержанием общих глюканов и α -глюканов.

Содержание углеводов определяли методом Зихерда-Блейера в модификации Смирнова [29]. Методом ГЖХ триметилсилильных производных (хроматограф GC-2010; Shimadzu, Япония) исследовали два варианта: исходный супернатант и супернатант после 20 ч гидролиза под действием 2 М трифторуксусной кислоты; точность определения времени удерживания — 0,1 мин, погрешность — $\pm 0,05$ мин [30].

Содержание белковых веществ оценивали по методу Лоури, общего и аминного азота — спектрофотометрически [31]; определение сухих веществ (СВ) в биомассе проводили методом высушивания при 105±3 °C по ГОСТ Р 56885-2016.

Для оценки молекулярной массы (Mr) глюканов и их производных применяли метод гель-фильтации на колонках размером 2,2 × 65 см с сефадексами G-75 и G-25 (Pharmacia, Швеция). В качестве маркеров молекулярной массы использовали N-α-бензоил-L-аргинин (Мг 439,95 Да; Sigma-Aldrich GmbH, Германия), NADF-Na (Mr 765,4 Да; Sigma-Aldrich GmbH), витамин B12 (Mr 1579,6 Да; ОАО «Верофарм», Россия), полиэтиленоксид (Mr 2 кДа; ООО «РусХимтрейд», Россия), цитохром С (Mr 13 кДа; Fujian, Китай), трипсиноген (Mr 25 кДа; Applichem, Германия), яичный альбумин (Mr кДа 45; Applichem), бычий сывороточный альбумин (Mr 67 кДа; Biosera, Корея), голубой декстран (Мг более 2000 кДа; Sigma), а в качестве элюента — дистиллированную воду; скорость элюции — 8 мл/ч/см².

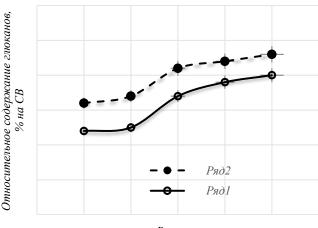
Атомно-силовая микроскопия

Морфологию и локальные свойства поверхности мицелия микромицета *А. niger* ВКПМ F-171 изучали с использованием сканирующего зондового микроскопа ФемтоСкан («ЦПТ», Россия) в режиме контактной атомно-силовой микроскопии (коэффициент жесткости кантилевера 60 мН/м, частота сканирования 1,22 Гц).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В результате ферментативного гидролиза растительной биомассы получены субстраты для культивирования исследуемого штамма A. niger ВКПМ F-171 с содержанием водорастворимых углеводов в 5-6 раз больше, чем в исходном сырье (табл. 1). Последние в большей степени представлены олигосахаридами, которые являются продуктами ферментативного гидролиза полисахаридов. В проведенных опытах под действием бактериальной α-амилазы крахмал деструктурировался до моносахарида глюкозы и олигосахаридов: мальтозы и декстринов. В результате сочетания действия ферментов, обладающих специфичностью действия на 1,4-а-глюкозидные связи (а-амилаза), и ферментов с целлюлазной, целлобиазной, ксиланазной и глюканазной активностью, катализирующих гидролиз 1,4-β-связей полисахаридов зерна ржи, получен субстрат, содержащий водорастворимые формы β-глюканов.

Известно, что в составе молекул, которые формируют срединный слой, необходимый для поддержания структурированности и нормального протекания обменных процессов с внешней средой, в многослойных клеточных стенках как растений, так и микромицетов содержатся пептидоглюканы, маннанопротеины. Поскольку


Содержание углеводов в сырье и субстратах

Content of carbohydrates in raw materials and substrates

	Относительное содержание, % СВ							
Наименование	общие УВ	водорастворимые УВ			глюканы			
		общие	сахариды		общие	водорастворимые,		
			моно-	олиго-	оощие	β-форма		
Сырье								
Измельченное зерно ржи	78±2	14±2	2±1	3±1	55±2	4±1		
Кукурузный крахмал	94±2	21±1	< 1	< 1	85±2	отсутствуют		
Субстрат								
Гидролизат измельченного зерна ржи	89±2	78±4	10±1	68±2	14±1	10±1		
Гидролизат кукурузного крахмала	96±3	96±3	4±1	91±2	н. о.	н. о.		

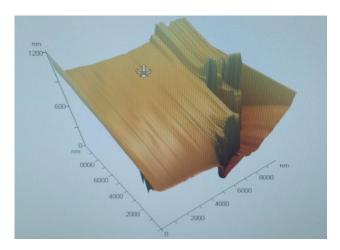
Примечание: УВ — углеводы; н. о. – не обнаружены.

Note: УВ — csrbohydrates, н. о. — not detected

Время, ч

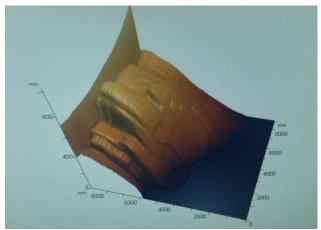
Рис. 1. Содержание глюканов в биомассе *A. niger* ВКПМ F-171. Ряд 1 — гидролизат измельченного зерна ржи, ряд 2 — гидролизат кукурузного крахмала.

Fig. 1. Content of glucans in *A. niger* biomass VKPM F-171. Row 1 — non-standard grain milling hydrolyzate, row 2 — corn starch hydrolysate.


Амилосубтилин содержит протеазу, то в состав гидролизата измельченного зерна ржи входят и продукты гидролиза пептидо- и протеинсодержащих компонентов. Содержание аминного азота в гидролизате превысило его уровень в исходном сырье на порядок и составило 1,2±0,2% СВ.

При культивировании штамма *A. niger* ВКПМ F-171 на полученных субстратах количество глюканов клеточной стенки микромицета изменялось в зависимости от времени культивирования. В мицелии, полученном в период ферментации от 96 до 120 ч, количество глюканов в 1,5–1,7 раз было выше, чем для 24–48-часового мицелия (рис. 1).

Различия также наблюдались и в морфологии поверхности клеточной стенки. Известно, что полисахариды, включая β -глюканы, создают слизистый слой, прилегающий к клеточной стенке.


С использованием контактной атомно-силовой микроскопии выявлено, что внешняя поверхность клеточной стенки штамма *А. niger* ВКПМ F-171 является многослойной структурой и различается на разных стадиях формирования мицелия (рис. 2 и 3).

Основная часть β-глюканов в клетках аспергиллов, согласно результатам многочисленных исследований, локализована в молекулах ХГК и прочно связана с хитином, представляющим собой неразветвленную β-1,4-цепь из модифицированных молекул глюкозы (N-ацетилглюкозамина) [18, 32, 33]. Так, Феофилова и соавт. показали, что глюканов больше содержится в мицелии, а в структуре спороносцев и спор преобладает хитин [25]. Авторами показано, что ХГК в большей степени формируется в терминальной фазе в спороносцах и в идиофазе в мицелии.

Рис. 2. Трехмерное изображение поверхности биомассы после культивирования *A. niger* ВКПМ F-171 в течение 48 ч. Сканирование с помощью зондового микроскопа.

Fig. 2. Three-dimensional image of the biomass surface after cultivation of *A. niger* VKPM F-171 for 48 h. Scanning with a probe microscope.

Рис. 3. Трехмерное изображение поверхности биомассы после культивирования *А. niger* ВКПМ F-171 в течение 96 ч. Сканирование с помощью зондового микроскопа.

Fig. 3. Three-dimensional image of the biomass surface after cultivation of *A. niger* VKPM F-171 for 96 h. Scanning with a probe microscope.

Таблипа 2

Характеристика биомассы штамма A. niger ВКПМ F-171

Characteristics of the biomass of the A. niger VKPM F-171

Субстрат	Концентрация	Содержание, % СВ					
Субстрат	биомассы, г/л КЖ	СВ	общих углеводов	общего белка	аминного азота		
Гидролизат измельченного зерна ржи	30±3	18±1	52±3	26±2	7±1		
Гидролизат кукурузного крахмала	12±3	14±1	37±1	20±1	4±1		

Примечание: приведены данные для подвергнутых ферментации гидролизатов крахмалсодержащего сырья; КЖ – культуральная жидкость.

Note: data are given for hydrolysates of starch-containing raw materials subjected to fermentation; KЖ-culture liquid

Нами показано, что независимо от субстрата по мере его расходования в процессе ферментации отношение содержания β-(1,3)(1,6)-глюкана в мицелии к содержанию водорастворимых олигосахаридов в исходном субстрате составляет 1:7 к 24 ч биотехнологического процесса и повышается до 1:4 к его окончанию, т.е. к 120 ч. При ферментации гидролизата крахмала отношение концентрации β-(1,3)(1,6)-глюканов в мицелии к общему содержанию глюканов составило 1:3 к 24 ч и снизилось до 1:4 к 120 ч процесса. Выявлено присутствие α-формы глюканов, возможно нигерана (табл. 2).

По сравнению с биомассой, полученной при ферментации гидролизата измельченного зерна ржи, биомасса, полученная в результате культивирования штамма *А. niger* ВКПМ F-171 на гидролизате кукурузного крахмала в течение 120 ч, была обеднена по содержанию углеводов

(в 1,2–1,4 раза), белка (в 1,1–1,5 раза), аминного азота (в 1,2–2,7 раз) и СВ (в 1,1–1,3 раза) (табл. 3 и 4).

В результате ферментации гидролизата помола зерна ржи биомасса, даже после отмывания от остатков ферментационной среды, содержала не только клетки продуцента, но и «неусвоенные» частички сырья. Они представляют собой обрывки зерновой оболочки и состоят из клетчатки и гемицеллюлозы, которые не разрушались при более длительном (более 3 ч) ферментативном гидролизе, что было выявлено ранее при изучении продуцирования лимонной кислоты и амилолитических ферментов исследуемым штаммом при культивировании на гидролизате помола зерна ржи [27]. Для биомассы, полученной при ферментации гидролизата измельченного зерна ржи, отношение концентрации β-(1,3)(1,6)-глюканов в мицелии к общему содержанию глюканов

Таблица 3

Углеводный состав биомассы A. niger ВКПМ F-171

Content of carbohydrates in A. niger VKPM F-171 biomass

	Относительное содержание, % СВ							
Наименование субстрата	_	I	водорастворимые	Глюканы				
	общие углеводы		сахаридь	обшие	водорастворимые			
	углеводы	общие	моносахариды	олигосахариды	оощие	общие	α-форма	β-форма
Биомасса до ферментативного гидролиза (после УЗ-обработки)								
Гидролизат измельченного зерна ржи	56±4	40±4	5±1	27±2	21±1	15±3	3±1	12±1
Гидролизат кукурузного								
крахмала	52±3	52±3	8±1	39±2	28±2	22±1	4±1	18±1
инкубаторферментер	54±1	54±1	10±1	41±1	32±1	26±1	3±1	23±1
Свекловичная меласса	64±1	60±2 10±1 30±1			20±1	15±2	н. д.	
	Биомасса после ферментативного гидролиза (супернатант)							
Гидролизат измельченного зерна ржи	75±1	67±3	9±1	35±1	25±1	24±1	3±1	21±1
Гидролизат кукурузного крахмала:								
 инкубатор 	82±1	76±2	16±1	39±2	34±1	32±1	2±1	30±1
• ферментер	87±1	81±2	12±1	48±2	36±1	35±1	2±1	33±1
Свекловичная меласса	73±1	67±2	15±1	34 ± 1	26±1	19±1	9±1 н. д.	

Примечание: н. д. — нет данных; данные по ферментации свекловичной мелассы получены в результате ранее проведенных исследований [34].

Note: н. д.- no data; data on fermentation of beet molasses were obtained as a result of previous studies [34]

Таблица 4

Содержание азотсодержащих соединений в биомассе A. niger BKIIM F-171

Content of nitrogen-containing compounds in A. niger VKPM F-171 biomass

	Относительное содержание, % на СВ						
Субстрат	аз	белковые вещества					
	общий амі						
Биомасса после УЗ-обработки							
Гидролизат измельченного зерна ржи	23±1	10±1	29±1				
Гидролизат кукурузного крахмала	10±1	5±1	36±1				
Биомасса после ферментативного гидролиза							
Гидролизат измельченного зерна ржи	25±1	17±1	13±1				
Гидролизат кукурузного крахмала	9±1	13±1	12±1				

и на 24 ч, и на 120 ч биотехнологического процесса составило 1:1, что обусловлено, скорее всего, присутствием неусвоенных аспергиллом β-(1,4)-полисахаридов. Для сравнения приведены данные, ранее полученные при культивировании штамма *A. niger* ВКПМ F-171 на мелассной среде в производственных условиях [34]. Содержание глюканов в биомассе находится на уровне показателя для биомассы, полученной при ферментации гидролизата помола зерна ржи. Свекловичная меласса и гидролизат помола зерна ржи являются более сложными по составу субстратами для

микромицетов. Помимо сахаридов меласса содержит поверхностно-активные вещества, а гидролизат помола зерна ржи — слизь, препятствующую усвоению углеводов.

Содержание водорастворимых углеводов в микробной биомассе к концу процесса ферментации было в 1,3–1,5 раза меньше по сравнению с самим субстратом (см. табл. 1 и 3). Глюканы в биомассе присутствовали на уровне 20–33% СВ, содержание их водорастворимых форм увеличивалось в результате действия β-глюканазы *Trichoderma longibrachiatum* и ксиланазы

Углеводный состав гидролизатов биомассы A. niger ВКПМ F-171

Carbohydrate composition of hydrolysates of A. niger VKPM F-171 biomass

	Содержание, мг/100 г гидролизата						
Компонент, время выхода (мин)	после ферментат	ивного гидролиза	после ферментативного гидролиза и последующего кислотного гидролиза				
	измельченное зерно ржи	кукурузный крахмал	измельченное зерно ржи	кукурузный крахмал			
Глюкоза, 36,10/38,25*	0,13	0,073	21,0	23,7			
2-Дезоксиглюкоза, 33,65	< 0,05	< 0,05	1,02	1,06			
6-Дезоксиглюкоза, 32,30	< 0,05	< 0,05	0,061	< 0,05			
Фруктоза, 34,01/34,25*	0,13	0,24	5,07	5,82			
Ксилоза, 31,24/32,81	0,058	< 0,05	18,4	16,8			
Фукоза, 30,32	< 0,05	< 0,05	0,103	0,096			
Галактоза, 35,35/36,44*	< 0,05	< 0,05	6,48	6,65			
Седогептулоза, 37,23	4,06	2,27	111,7	103,8			
Манноза, 34,08/36,63*	< 0,05	< 0,05	3,09	2,92			
Глюкозамин, 36,91	< 0,05	< 0,05	25,7	24,3			

Примечание: приведены средние значения, рассчитанные на основании трех экспериментов, проведенных методом ГЖХ; относительная погрешность составила $\pm 10\%$. *Времена выхода аномерных форм.

Note: the average values calculated on the basis of three experiments conducted by the GLC method are given; the relative error was $\pm 10\%$. *The time of the release of anomeric forms

Рис 4. ГЖХ-анализ деструктурированной биомасса *A. niger* ВКПМ F-171 после ферментативного гидролиза (*a*), после ферментативного гидролиза и последующего кислотного гидролиза (*b*). Субстрат: меласса свекловичная (синий), гидролизат кукурузного крахмала (оранжевый) и гидролизат помола зерна ржи нестандартного качества (черный).

Fig 4. GLC-analysis of the degraded biomass of *A. niger* VKPM F-171 after enzymatic hydrolysis (a), after enzymatic hydrolysis and subsequent acid hydrolysis (b). Substrate: beet molasses (blue), corn starch hydrolyzate (red) and non-standard grain milling hydrolyzate (black).

Тгісhoderma reesei, которые расщепляют соответственно β -(1,3)(1,4)- и эндо- β -(1,4)-связи в глюкан- и ксилансодержащих соединениях. Полученные продукты являются результатом биокаталитического расщепления глюкансодержащих биополимеров микробной клетки, в основном представленных ХГК. Для сравнения: ранее установлено, что при ферментации «простых» субстратов, таких как сахароза (дисахарид), входящая в состав сахарозоминеральной и мелассной сред в качестве источника углерода, штаммом

А. niger ВКПМ F-171 содержание водорастворимых β -глюканов было соответственно 41 \pm 2% СВ и 34 \pm 1% СВ [34].

При анализе методом ГЖХ жидкой фракции ферментативно гидролизованной биомассы обнаружены углеводы, содержание которых варьировало в зависимости от сырьевого источника (табл. 5, рис. 4).

Идентифицированы глюкоза, фруктоза, ксилоза, седогептулоза. Содержание глюкозы в кислотных гидролизатах в опытах по ферментации

гидролизата кукурузного крахмала и гидролизата зернового помола увеличилось соответственно в 164 и 324 раза. Следует отметить, что доля глюкозы в соответствующих ферментативных гидролизатах от ее содержания в кислотных гидролизатах составляет лишь 0,3% и 0,6%. Полученные данные свидетельствуют о нахождении D-глюкопираноз в жидкой фракции ферментативных гидролизатов в основном в связанном состоянии.

После последующего кислотного гидролиза также идентифицированы фукоза, галактоза, манноза, дезокси- и аминопроизводные глюкозы, фосфорсодержащее производное фруктозы, причем в большем количестве в биомассе, полученной при ферментации мелассной среды.

В отличие от ферментативных гидролизатов, в кислотных гидролизатах идентифицированы 2-дезоксиглюкоза, 6-дезоксиглюкоза (при использовании гидролизата измельченного зерна ржи), глюкозамин. Концентрации 2-дезоксиглюкозы в исследуемых кислотных гидролизатах были приблизительно одинаковыми. Содержание глюкозамина (структурная единица хитозана) было на одном уровне как в опытах по ферментации гидролизата кукурузного крахмала, так и гидролизата измельченного зерна ржи. Наличие 6-дезоксиглюкозы в кислотных гидролизатах предполагает (1,6)-β-тип гликозидных связей в глюканах и присутствие водорастворимых (1,3)(1,6)-β-Dформ. Основная линейная цепь макромолекул В-глюканов микробного происхождения состоит из остатков β-D-глюкопираноз, которые соединены β-(1,3)-гликозидными связями [8]. Боковые ответвления находятся в положениях О-6, их размер и частота варьируют.

Следует отметить присутствие на хроматограммах пика в районе 37,4 мин, площадь которого составляет более 40% от суммы всех пиков на хроматограмме после кислотного гидролиза. Пик соответствует седогептулозе — кетогептозе, которая является продуктом третьего этапа пентозного цикла, заключающегося в конденсации с помощью трансальдолазы эритрулозо-4-фосфата и глицеральдегид-3-фосфата. Седогептулоза функционирует как резервный источник для образования ряда сахаров с различным числом атомов углерода. Для сравнения приведены результаты ГЖХ для деструктурированной в аналогичных условиях биомассы, полученной при ферментации свекловичной мелассы, углеводный состав которой представлен в основном дисахаридом сахарозой (см. рис. 2). Следует отметить значительное совпадение времен удерживания компонентов анализируемых образцов биомассы. Содержание глюкозы после ферментативного и последующего кислотного гидролиза биомассы, полученной при ферментации мелассы, составило 21,1 мг/100 г гидролизата. Представленные результаты близки к таковым для биомассы, полученной при ферментации гидролизата кукурузного крахмала. Выявленное содержание глюканов в биомассе, как при ферментации гидролизата кукурузного крахмала, так и мелассной среды, находилось практически на одном на уровне (см. табл. 3). В результате культивирования на более сложных по составу субстратах, к которым относятся гидролизаты крахмала и помола зерна ржи, накопленная аспергиллом биомасса по суммарному содержанию водорастворимых монои олигосахаридов уступает биомассе, полученной при ферментации мелассной среды. Однако в деструктурированной после воздействия β-глюканазой Trichoderma longibrachiatum и ксиланазой Trichoderma reesei биомассе содержание β-глюканов увеличивалось более заметно [34]. Как упомянуто выше, структурные единицы клетчатки и гемицеллюлоз в качестве источника углерода востребованы у аспергиллов минимально. Именно поэтому показатель «общие глюканы» для исследуемой биомассы включает глюканы как микробного, так и растительного происхождения. Ксилоза, структурная единица ксилана, который не растворим в воде, но растворим в слабых растворах щелочей и легко гидролизуется под влиянием слабых кислот, идентифицирована методом ГЖХ в жидкой фракции ферментативно гидролизованной в слабокислой среде биомассы, полученной при культивировании гидролизата помола зерна ржи (см. табл. 3). Следует отметить, что ее количество существенно увеличилось (в 317 раз) после кислотного гидролиза трифторуксусной кислотой, что свидетельствует о присутствии ксилана в жидкой фракции ферментативного гидролизата (супернатанте). Интерес представляет присутствие ксилозы — продукта гидролиза полисахарида, встречающегося в основном в растениях, — в супернатантах, полученных в опытах по ферментации гидролизата кукурузного крахмала. С одной стороны, возможно, что ксилоза изначально присутствует в питательной среде, не усваивается микромицетом A. niger ВКПМ F-171 и в неизменном виде попадает в супернатант после всех стадий разрушения биомассы. С другой стороны, ксилоза может образоваться в результате совместного действия синтезируемых штаммом A. niger ВКПМ F-171 ферментов с транс-гликозилирующей способностью, таких как глюкоамилаза и глюкозидаза [28].

Общим признаком для клеток некоторых микромицетов и растительных клеток является

наличие гемицеллюлоз — полимеров маннозы, галактозы и других моносахаров. В качестве полимерных запасных веществ также встречаются сахароспирты, такие как маннит, сорбит, ксилит и др. Помимо полисахаридов в структуре грибных клеток и клеток некоторых растений присутствует дисахарид трегалоза, играющий важную роль в адаптациях к стрессам и в регуляции осмотических процессов [1]. По данным других исследователей, состав клеточной стенки грибов Aspergillus включает D-конфигурации глюкозы, галактозы, маннозы, арабинозы, глюкозамина, галактозамина и небольшое количество 1-галактозы [35, 36-38]. Нейтральные углеводы составляют 73-83%, гексозамин — от 9% до 13% [36, 38]. Экспериментальные данные, полученные в результате кислотного гидролиза и последующей ГЖХ, свидетельствуют о присутствии указанных выше моносахаридов — продуктов гидролиза полисахаридов, — причем в большем количестве в биомассе, полученной при ферментации гидролизата помола зерна ржи (см. табл. 4).

Различия в количественном содержании глюканов в клетках микроорганизмов различных таксономических групп обусловлены рядом факторов, одним из которых является метаболизм соединений, содержащих структурные единицы не только углеводной природы, но в том числе и белковой. Не исключено, что обнаруженное увеличение содержания глюканов в исследуемой биомассе аспергилла после ферментативной обработки обусловлено образованием углеводов, содержащих β-связь, из гликопептидов вследствие протекания побочных каталитических реакций. Подтверждением этому служат результаты, приведенные в табл. 4, по концентрациям азотсодержащих соединений в биомассе до и после ферментативной обработки.

После биокатализа отмечено практически двукратное увеличение содержания аминного азота, что обусловлено образованием производных, в частности N-ацетилглюкозамина. В определенном количестве в клетках аспергиллов может присутствовать растворимая форма хитина – хитозан, в структуре которого есть аминогруппы.

Нами проанализирован и качественный состав водорастворимых глюканов жидкой фракции ферментативного гидролизата биомассы A. niger ВКПМ F-171. В зависимости от условий ферментативного гидролиза глюканов образуются продукты с различной длиной углеводной цепи, отличающиеся по молекулярной массе. Методом гель-фильтрации установлено, что молекулярная масса водорастворимых β -D-гюканов в исследованных объектах находится в пределах

от 0,5 до 50 кДа. По данным других исследователей, растворимые формы β-D-глюканов имели M_r от 1,48 до 372 кДа (для сравнения: наибольшая молекулярная масса повторяющихся субъединиц в α-1,3-глюкане практически одинакова и составляет от 1,4 до 94,5 кДа (деградация по Смиту) [11]). Полученная жидкая фракция ферментативного гидролизата биомассы A. niger BKПМ F-171, содержащая структурно различные β-глюканы с относительно небольшой молекулярной массой, представляет интерес в качестве источника потенциальных биологически активных соединений при профилактике нарушений работы иммунной системы, углеводного и липидного обмена [39-44]. К важным характеристикам таких β-глюканов относится повышенная стабильность к изменения рН и повышенная биологическая активность по сравнению с о-глюканами. Так, β-глюкан, выделенный из биомассы сахаромицетов, благодаря небольшой молекулярной массе (6,5 кДа), легко проникает через слизистую кишечника и проявляет сильный иммуномодулирующий эффект [39].

Таким образом, углеводный состав субстратов из крахмалсодержащего сырья влияет на биосинтез глюканов микромицетом *А. niger* ВКПМ F-171 — продуцента лимонной кислоты и амилолитических ферментов.

На основании представленных материалов можно сделать следующие выводы:

- превалирование глюкановой части характерно для биомассы микромицета A. niger
 ВКПМ F-171, полученной при ферментации гидролизата кукурузного крахмала;
- повышенное содержание ксилозы в полисахаридах из биомассы, полученной при культивировании аспергилла на гидролизате зернового помола ржи, обусловлено присутствием остаточной не усвоенной грибом целлюлозы и гемицеллюлозы;
- повышенное количество водорастворимых форм (1,3)(1,6)-β-D-глюканов возможно получить при оптимизации условий ферментативного гидролиза с использованием специфических ферментов, не затрагивающих разветвленные участки глюкановой цепи;
- биомасса микромицета составляет альтернативу растительным источникам β-глюканов.

Для более корректной оценки свойств и структуры синтезируемых штаммом A. niger ВКПМ F-171 глюканов необходимо исследовать влияние концентрации углеводного субстрата и источника азота на продуктивность биосинтеза

глюкансодержащих полимеров, учитывая, что изменение соотношения C:N может привести к изменению направленности биосинтеза. Поскольку субстраты, полученные из крахмалсодержащего сырья, отличаются качественным и количественным составом углеводных структурных звеньев, то и синтезированные микромицетом полисахариды и продукты их гидролиза имеют свои структурные особенности, что предстоит изучить с использованием специальных методов. Полученные данные можно считать первым шагом к разработке технологии получения глюканов, востребованных для создания продукции функционального назначения и биологически активных субстанций, из аспергиллов.

ЛИТЕРАТУРА

- 1. Beauvais A.E., Fontaine T., Aimanianda V., Latg J.-P. *Aspergillus* cell wall and biofilm. *Mycopathologia*, 2014, 178, 371–377. doi: 10.1007/s11046-014-9766-0
- Latgé J.P., Beauvais A. Functional duality of the cell wall. *Curr. Opin. Microbiol.*, 2014, 20, 111–117. doi: 10.1016/j.mib.2014.05.009
- 3. Lee M.J., Sheppard D.C. Recent advances in the understanding of the *Aspergillus fumigatus* cell wall. *J. Microbiol.*, 2016, 54, 232–242. doi: 10.1007/s12275-016-6045-4
- 4. Yoshimi A., Miyazawa K., Abe K. Cell wall structure and biogenesis in *Aspergillus species*. *Biosci. Biotechnol. Biochem.*, 2016, 80(9), 1700–1711. doi: 10.1080/09168451.2016.1177446
- 5. Yoshimi A., Miyazawa K., Abe K. Function and biosynthesis of cell wall α-1,3-glucan in fungi. *J. Fungi*, 2017, 3(4), 63–83. doi: 10.3390/jof3040063
- Alam M.K., van Straaten K.E., Sanders D.A., Kaminskyj S.G. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants. PLoS One. 2014, 9(1), e85735, 1–10. doi: 10.1371/journal.pone.0085735
- Henry C., Latge J.P., Beauvais A. α-1,3-Glucans are dispensable in *Aspergillus fumigatus*. *Eukaryot*. *Cell*, 2012, 11(1), 26–29. doi: 10.1128/EC.05270-11
- 8. Gastebois A, Mouyna I, Simenel C, Clavaud C., et al. Characterization of a new beta(1-3)-glucan branching activity of *Aspergillus fumigatus*. *J. Biol. Chem.*, 2010, 285(4), 2386–2396. doi: 10.1074/jbc.M109.077545
- 9. Yuan X.L., van der Kaaij R.M., van den Hondel C.A., Punt P.J., et al. *Aspergillus niger* genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. *Mol. Genet. Genomics*, 2008, 279(6), 545–561. doi: 10.1007/s00438-008-0332-7

- 10. He X., Li S., Kaminskyj S.G.W. Characterization of *Aspergillus nidulans* α-glucan synthesis: roles for two synthases and two amylases. *Mol. Microbiol.*, 2014, 91(3), 579–595. doi: 10.1111/mmi.12480
- 11. Synytsya A, Novák M. Structural diversity of fungal glucans. *Carbohydr. Polym.*, 2013, 92(1), 792–809. doi: 10.1016/j.carbpol.2012.09.077
- 12. Новинюк Л.В., Велинзон П.З., Кулев Д.Х. Сорбционные свойства хитин- и хитозанглюкановых биокомплексов, выделенных из мицелиальной биомассы гриба Aspergillus niger. Известия вузов. Прикладная химия и биотехнология, 2017, 7(2), 64–71. doi: 10.21285/2227-2925-2017-7-2-64-71
- Guo M. Q., Hu X., Wang C. Polysaccharides: structure and solubility. In: *Solubility of Polysaccharides*. Ed.Z. Xu. London: IntechOpen, 2017, 7–21. doi: 10.5772/intechopen.71570
- 14. Mandal S., Maity K.K., Bhunia S.K., Dey B., et al. Chemical analysis of new water-soluble (1→6)-, (1→4)-α, β-glucan and water-insoluble (1→3)-, (1→4)-β-glucan (Calocyban) from alkaline extract of an edible mushroom, *Calocybe indica* (Dudh Chattu). *Carbohydr. Res.*, 2010, 345, 2657–2663. doi: 10.1016/j.carres.2010.10.005
- 15. Dichtl K., Samantaray S., Aimanianda V., Zhu Z., et al. *Aspergillus fumigatus* devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. *Mol. Microbiol.*, 2015, 95, 458–471. doi: 10.1111/mmi.12877
- Medeiros S.D.V., Cordeiro S.L., Cavalcanti J.E.C., Melchuna K.M., et al. Effects of purified *Saccharomyces cerevisiae* (1→3)-β-glucan on venous ulcer healing. *Int. J. Mol. Sci.*, 2012, 13(7), 8142–8158. doi: 10.3390/ijms13078142
- Ferreira S.S., Possos C.P., Madureira P., Vilanova M., et al. Structure-function relationships of immunostimulatory polysaccharides. A review. *Carbohydr. Polym.*, 2015, 132, 378–396. doi: 10.1016/j.carbpol.2015.05.079
- Kang X., Kirui A., Muszyński A., Widanage M.C.D., et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. *Nat. Commun.*, 2018, 9, 2747. doi: 10.1038/s41467-018-05199-0
- 19. Choma A., Wiater, A., Komaniecka I., Paduch, R., et al. Chemical characterization of water insoluble (1→3)-α-D-glucan from an alkaline extract of *Aspergillus wentii*. *Carbohydr. Polym.*, 2013, 91(2), 603–608. doi: 10.1016/j.carbpol.2012.08.060
- 20. Wiater A., Paduch R., Choma A., Sylwia S., et al. (1→3)-α-D-Glucans from *Aspergillus spp*.: structural characterization and biological study on their carboxymethylated derivatives. *Curr. Drug Targets*, 2015, 16(13), 1488–1494. doi: 10.2174/1389450116666150120105133
- 21. Saraswat-Ohri S., Vashishta A., Vetvicka V., Descroix K.F., et al. Biological properties of (1-3)-β-D-glucan-based synthetic oligosaccharides. *J. Med. Food*, 2011, 14(4), 369–376. doi: 10.1089/jmf.2010.0081

- 22. Nitsche B.M., Jorgensen T.R., Akeroyd M., Meyer V., et al. The carbon starvation response of *Aspergillus niger* during submerged cultivation: insight from the transcriptome and secretome. *BMC Genomics*, 2012, 13(380), 1–23. doi: 10.1186/1471-2164-13-380
- 23. Złotko K., Wiater A., Waśko A., Pleszczyńska M., et al. A report on fungal (1→3)-α-D-glucans: properties, functions and application. *Molecules*, 2019, 24(21), e3972, 1–20. doi: 10.3390/molecules24213972
- 24. Шарова Н.Ю. Биосинтез ингибитора амилаз культурами стрептомицетов. *Биотехнология*, 2015, 5, 22–33. doi: 10.1134/S000368381608007X
- Феофилова Е.П., Немцев Д.В., Терешина В.М., Меморская А.С. Состав и содержание хитин-глюканового комплекса в онтогенезе гриба Aspergillus niger. Прикладная биохимия и микробиология, 2006, 42(6), 624–628. doi: 10.1134/S0003683806060032
- 26. Ермакова В.П., Щербакова Е.Я., Василинец И.М., Финько В.М., Шушкевич Т.И. Штамм гриба *Aspergillus niger* Л-4 продуцент лимонной кислоты. Патент SU 975799 A1, 1982.11.23.
- 27. Шарова Н.Ю., Каменькова Н.В., Кулев Д.Х., Палаев А.Г., Палаев Н.А., Потапов А.И. Способ подготовки крахмалсодержащего сырья при производстве лимонной кислоты. Патент RU 2424321 C1, 2011.07.20
- 28. Шарова Н.Ю., Позднякова Т.А., Выборнова Т.В., Кулев Д.Х. Способ получения лимонной кислоты, альфа-амилазы и глюкоамилазы. Патент RU 2 366 712 C2, 2009.09.10
- 29. Трегубов Н.Н., Костенко В.Г. *Технохимический контроль крахмалопаточного производства*. М: Агропромиздат, 1991, 272 с.
- 30. Мухутдтинов Р.Р., Пилипенко Т.В., Кручина-Богданов И.В. Идентификация порошкообразных продуктов методом газовой хроматографии с предварительной дериватизацией проб. Вестинк ЮУрГУ. Серия «Пищевые и биотехнологии», 2019, 7(4), 75–84. doi: 10.14529/food190408
- 31. Muik B., Edelmann A., Lendle B. Ayora-Cañada M.J. Determination of yeast assimilable nitrogen content in wine fermentations by sequential injectionanalysis with spectrofotometric detection. *Anal. Bioanal. Chem.*, 2002, 374(1), 167–162. doi: 10.1007/s00216-002-1418-4
- Kozarski M.S., Klaus A.S., Nikšić M.P., Van Griensven L. J. L. D., et al. Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Hemijska industrija, 2014, 68(3), 305–320. doi: 10.2298/HEMIND121114056K
- 33. He X., Li S., Kaminskyj S.G.W. An amylase-like protein, AmyD, is the major negative regulator for α-glucan synthesis in *Aspergillus nidulans* during the asexual life

- cycle. *Int. J. Mol. Sci.*, 2017, 18(4), 695–718. doi: 10.3390/ijms18040695
- 34. Шарова Н.Ю., Манжиева Б.С., Принцева А.А., Выборнова Т.В. Бета-глюканы из биомассы растительного и микробного происхождения. *Пищевые системы*, 2019, 2(1), 23–26. doi: 10.21323/2618-9771-2019-2-1-23-26
- 35. Артамонова С.Д., Шарнина Ф.Ф. Выделение D-глюкозамина из хитин-глюкановых комплексов. *При*кладная биохимия и микробиология, 2013, 49(4), 417— 422. doi: 10.7868/S0555109913030045
- 36. Карелин А.А., Цветков Ю.Е., Нифантьев Н.Э. Синтез олигосахаридов, родственных полисахаридам клеточной стенки грибов *Candida* и *Aspergillus*. *Успехи химии*, 2017, 86(11), 1073–1126. doi: 10.1070/RCR4750
- Крылов В.Б., Петрук М.И., Глушко Н.И., Халдеева Е.В. и др. Исследование углеводной специфичности антител против препаратов условно патогенных грибов рода Aspergillus. Прикладная биохимия и микробиология, 2018, 54(5), 525–531. doi: 10.1134/S0555109918050094
- 38. Zhang S., Sato H., Ichinose S., Tanaka M., Miyazawa K., Yoshimi A., Abe K., Shintani T., Gomi K. Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of *Aspergillus oryzae*. *J. Biosci. Bioeng*, 2017, 124, 47–53. doi: 10.1016/j.jbiosc.2017.02.013
- 39. Jiezhong C., Kenneth R. Beta-glucans in the treatment of diabetes and associated cardiovascular risks. *Vasc. Health Risk Manag.*, 2008, 4(6), 1265–1272. doi: 10.2147/vhrm.s3803
- Grundy M.M.L., Quint J., Rieder A., et al. The impact of oat structure and β-glucan on *in vitro* lipid digestion. *J. Funct. Foods*, 2017, 38(Pt. A), 378–388. doi: 10.1016/j.jff/2017.09.011
- 41. Synytsya A., Novak M. Structural diversity of fungal glucans. *Carbohyr. Polym.*, 2013, 92, 792–809. doi: 10.1016/j.carbpol.2012.09.077
- 42. Choromanska A., Kulbacka J., Harasym J., Oledzki R., Szewczyk A., Saczko J. High- and low-molecular weight beta-glucan reveals antitumor activity in human epithelial lung cancer. *Pathol. Oncol. Res.*. 2018, 24(3), 583–592. doi: 10.1007/s12253-017-0278-3
- 43. Hong J.H., Jung H.K. Antioxidant and antitumor activities β-glucan-rich exopolysaccharides with different molecular weight from *Paenibacillus polymyxa* JB115. *Korean Soc. Appl. Biol. Chem.*, 2014, 57, 105–112. doi: 10.1007/s13765-013-4252-9
- 44. Li W., Cui S.W., Wang Q., Yada R.Y. Studies of aggregation behaviours of cereal β-glucans in dilute aqueous solutions by light scattering: Part I. Structure effects. *Food Hydrocolloids*, 2011, 25, 189–195.

Effect of Carbohydrate Substrate from Starch-Containing Raw Materials on the Composition of Glucans in the Micromycete Aspergillus niger VKPM F-171 Biomass

N.Yu. SHAROVA^{1, 2*}, B.S. MANZHIEVA¹, A.A. PRINTSEVA¹, T.V. VYBORNOVA¹, A.S. MIROSHNIK¹, I.V. KRUCHINA-BOGDANOV³ and I.A. OREKHOVA²

Received January 23, 2020 Revised May 04, 2020 Accepted September 19, 2020

Abstract–The conditions for biocatalytic cleavage of corn starch and rye whole grain flour for the subsequent cultivation of the *Asperillus niger* strain VKPM F-171 are described. As a result of this procedure, the amount of water-soluble carbohydrates in the substrates increased by 5–6 times in comparison with the initial raw material, and the content of glucan β-form in the hydrolysate of rye whole grain flour grew by 2–3 times. The content of glucans in the biomass by the end of the cultivation of *A. niger* VKPM F-171 on corn starch hydrolysate was $28\pm2\%$ of dry matter, while the proportion of glucans after fermentation on the rye whole grain flour hydrolysate was $21\pm1\%$, 96–97% of which were β-glucans. The hydrolysis with *Trichoderma longibrachiatum* β-glucanase and *Trichoderma reesei* xylanase resulted in a 1.1-1.2-fold increase in the proportion of soluble carbohydrates in microbial biomass. It was found via gas-liquid chromatography that the structural units of carbohydrates in microbial biomass are represented by glucose and its 2- and 6-deoxy derivatives, fructose, fucose, galactose, mannose, xylose, and, to the greatest extent, by the reserve saccharide sedoheptulose. It was established that β-glucans are products of hydrolysis of the chitin-glucan complex and glycopeptides. The molecular weight of the obtained microbial glucan-containing biopolymers ranges from 0.5 to 50 kDa. It was shown that the content of β-glucans in microbial biomass allows the latter to be considered as an alternative to plant sources.

Key words: biosynthesis, Asperillus niger, biocatalysis, starch-containing raw materials, glucans

doi: 10.21519/0234-2758-2020-36-5-41-53

¹ All-Russian Research Institute for Food Additives, Branch of the V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, St. Petersburg, 191014, Russia

² Saint Petersburg State Chemical Pharmaceutical University, St.-Petersburg, 197376, Russia

³ "Analitics. Materials. Technologies" small innovation enterprise., St-Petersburg, 194021, Russia

^{*}e-mail: natalya sharova1@mail.ru